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Abstract

We consider oriented knots and links in a handlebody of genus g
through appropriate braid representatives in S3, which are elements of the
braid groups Bg,n. We prove a geometric version of the Markov theorem
for braid equivalence in the handlebody, which is based on the L-moves.
Using this we then prove two algebraic versions of the Markov theorem.
The first one uses the L-moves. The second one uses the Markov moves
and conjugation in the groups Bg,n. We show that not all conjugations
correspond to isotopies.

1 Introduction

A natural generalization of the classical knot theory in S3 considers knots and
links in more general 3-manifolds. While topological quantum field theories pro-
vide an approach to invariants of links in closed (i.e. compact without bound-
ary) 3-manifolds, bounded 3-manifolds are also of interest, since –for once– they
give rise to closed, connected, orientable 3-manifolds. In particular, we have on
the one hand handlebodies, which give rise to 3-manifolds via the Heegaard
decomposition, and on the other hand knot complements, which give rise to
3-manifolds via the surgery technique. In [9] knots and links in knot comple-
ments and 3-manifolds are studied via braids. Here we study knots and links in
handlebodies. The special case of the solid torus is the only bounded manifold
common in both categories, and its knot theory has been studied quite exten-
sively from various viewpoints (see [19], [5], [6], [10, 3, 11], [8], [2], [4]). Various
aspects of the knot theory of a handlebody have been studied in [15], [16], [18],
[13], [20], [14]. Let now Hg denote a handlebody of genus g. A handlebody of
genus g is usually defined as (a closed disc \ {g open discs})× I, where I is the
unit interval. See Fig. 1.
Equivalently, Hg can be defined as (S3 \ an open tubular neighbourhood of Ig),
where Ig denotes the pointwise fixed identity braid on g indefinitely extended
strands, all meeting at the point at infinity, see Fig. 2. Thus Hg may be repre-
sented in S3 by the braid Ig. Now let L be an oriented link in Hg. Then L will
avoid the g hollow tubes of Hg, and also it will not pass beyond the boundary
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Figure 1: A handlebody of genus 3
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Figure 2: Representation of Hg - a mixed link

of Hg from either end. Equivalently, the link L in Hg may be represented unam-
biguously by the mixed (g, g)-tangle Ig

⋃
L in S3, which by abuse of language

we shall call mixed link (see Fig. 2). The subbraid Ig shall be called the fixed
part and L the moving part of the mixed link. A mixed link diagram Ig

⋃
L̃ is

then a diagram of Ig

⋃
L projected on the plane of Ig, which is equipped with

the top-to-bottom direction. Note that, if we remove Ig from a mixed link we
are left with an oriented link in S3.

In this paper we study isotopy of oriented links and equivalence of braids
in Hg via their mixed link and mixed braid representatives in S3. The paper
is organised as follows. In Section 2 we study knot isotopy in handlebodies
combinatorially, we establish the notion of a braid in Hg, and we prove that every
oriented link in Hg can be braided. In Section 3 we prove a geometric version
of the Markov theorem for oriented links in Hg (Theorem 3) using the so-called
L-moves (Definition 6) and the Relative Version of Markov theorem. In Section
4 we define the algebraic structures of braids in S3 that represent braids in Hg

and we prove two algebraic versions of the Markov theorem for handlebodies.
The first one (Theorem 4) uses the L-moves. The second one (Theorem 5) uses
a presentation of the groups Bg,n, and its formulation resembles the classical
Markov theorem for S3. Only, here the Markov move (the one that introduces
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a twist) has to take place anywhere on the right of the braid. Also, as we
prove, not all conjugations in the groups Bg,n induce isotopy in the handlebody.
This disproves a conjecture of A. Sossinsky, [18]. In Section 5 we discuss which
conjugations are allowed (Theorem 6). Finally, in Section 6 we discuss what
kind of maps should be defined on appropriate quotient algebras in order to
replace the notion of a Markov trace.

Parts of this paper have been presented at the AMS meeting in Buffalo,
Spring ’99, at the AMS meeting in Louisiana, Spring 2000, at the ‘Knots 2000’
in Korea and at the KLM meeting in Siegen, January 2001. We would like
to thank the referee for several valuable comments. Also Jozef Przytycki and
Adam Sikora for very important discussions.

2 Knots and braids in Hg

Throughout the paper the handlebody Hg will be represented in S3 by the braid
Ig, as defined in Section 1, and a link L in Hg will be represented by the mixed
link Ig

⋃
L in S3. The set-up is similar to the one of [9], and we will refer to [9]

for the proofs of results needed here and already established there. Otherwise,
we have tried to present our results in a self-contained manner. All links will
be assumed oriented and all diagrams piecewise linear (PL). Whenever we say
‘knots’ we mean ‘knots and links’. Finally, we will be thinking in terms of
diagrams for both knots and braids.

Definition 1. Two oriented links L1, L2 in Hg are isotopic if and only if there
is an ambient isotopy of (S3 \ Ig, L1) −→ (S3 \ Ig, L2) taking L1 to L2.
Equivalently, L1 and L2 are isotopic in Hg if and only if the mixed links Ig

⋃
L1

and Ig

⋃
L2 are isotopic in S3 by an ambient isotopy which keeps Ig pointwise

fixed.

In the PL category ambient isotopy is realized through a finite sequence of the
so-called ∆-moves in three-space.

Definition 2. A ∆-move on a link L in Hg is an elementary combinatorial
isotopy move (and its inverse), realized by replacing an arc of L by two other
arcs respecting orientation, and such that all three arcs span a triangle in space,
the spanning surface of which does not intersect any other arcs of L. On the
level of the mixed link Ig

⋃
L in S3, a ∆-move applies only on the moving part.

A ∆-move on a mixed link diagram Ig

⋃
L̃ is the regular projection of a ∆-move

on the plane of Ig.

Definition 3. A non-critical ∆-move on a link L in Hg is a ∆-move, such that
on its regular projection on the plane of the subbraid Ig nothing critical occurs
if we remove the subbraid Ig. Consequently, on the level of the mixed link
diagram Ig

⋃
L̃, a non-critical ∆-move will be a ∆-move on L̃, whose spanning

triangle either does not meet any other arcs on the plane of projection (and
so it is a planar ∆-move in the classical set-up) or it meets parts of the fixed
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,,

Figure 3: Mixed isotopy moves

subbraid Ig. These last possibilities shall be called mixed isotopy moves, see
Fig. 3.

Reidemeister [17] (and Alexander, Briggs [1]) proved that a ∆-move on a link
diagram in S3 can break into a finite sequence of the three local ∆-moves known
as ‘Reidemeister moves’, and of planar ∆-moves, i.e. moves, whose spanning
triangle does not meet any other arcs on the projection plane, with their obvious
symmetries and choices of orientation. From the above we deduce that knot
isotopy in Hg is realized combinatorially through the following (compare with
the relative version of Reidemeister theorem, Theorem 5.2 of [9]):

Theorem 1 (Reidemeister theorem for Hg). Two oriented links in Hg are
isotopic if and only if any two corresponding mixed link diagrams in S3 differ by
a finite sequence of planar ∆-moves, the three Reidemeister moves and the mixed
isotopy moves (with their obvious different choices of orientation, crossings and
direction), all of which apply only on the moving parts of the diagrams.

Assuming that the strands of Ig are oriented downwards, we can now define:

Definition 4. A geometric mixed braid on n strands, denoted Ig

⋃
B, is an

element of the classical braid group Bg+n, consisting of two disjoint sets of
strands, one of which is the identity braid Ig, whilst the other set of strands
has labels ‘u’ or ‘o’ (for ‘under’ or ‘over’) attached to each pair of corresponding
endpoints (see Fig. 4). For the two sets of strands we use the terms Ig-part for
the identity subbraid and Bn-part for the labelled subbraid B. The reason for
choosing this notation will become clear soon. A diagram of a geometric mixed
braid is a braid diagram in the usual sense, projected on the plane of Ig.

Fig. 4 illustrates an abstract geometric mixed braid enclosed in a ‘box’, as well
as an example in B6. Note that the set of geometric mixed braids on n strands
does not form a group, as composition may not be well-defined. Geometric
mixed braids in Hg may be visualized as having endpoints on three different
parallel planes, parallel to the plane of the paper, such that the subbraid Ig

lies on the middle one, the endpoints labelled ‘o’ lie on the front plane (the one
closest to the reader), and the endpoints labelled ‘u’ lie on the back plane (the
furthermost from the reader).

We obtain knots from braids via the well-known closing operation adapted
to our situation. So, we have:
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Figure 4: Geometric mixed braids

Definition 5. The closure C(Ig

⋃
B) of a geometric mixed braid Ig

⋃
B is an

operation that results in an oriented mixed link, and it is realized by joining
each pair of corresponding (slightly bent) endpoints of the Bn-part by a verti-
cal segment, either over or under the rest of the braid, according to the label
attached to these endpoints (see Fig. 5 for an example).

Note that the strands of Ig do not participate in the closure operation, that’s
why they are assumed to be infinitely extensible. Besides, the labelling ‘u’ or ‘o’
for corresponding endpoints in Definition 4 is precisely an instruction on how to
perform the closure. Different choices of labels will yield in general non-isotopic
links in Hg, as the example in Fig. 6 illustrates. We return to this example in
the discussion before Fig. 19.

Remark 1. Let M denote the complement of the g-unlink or a connected sum
of g lens spaces of type L(p, 1). Then braids in M can be also represented in
S3 by unlabelled geometric mixed braids with Ig as a fixed subbraid (cf. [9]).
Note that in both Hg and M , if we remove Ig from a mixed braid, we are left
with a braid in S3. This will be a labelled braid in the case of Hg. But this is
equivalent to the familiar unlabelled picture of a classical braid, since a closing
arc labelled ‘o’ can slide freely over to the side and then to the back of the braid,
thus aquiring the label ‘u’ (see Fig. 7). This isotopy is the reason that mixed
braids in M are not labelled, since in the set-up of [9] Ig participates also in the
closure of the braid (contrary to Hg).

Conversely to the closure of braids, mixed links may be braided, so that if we
start with a mixed link, do braiding and then take closure, we obtain a mixed
link isotopic to the original one. Indeed, we have:

Theorem 2 (Alexander theorem for Hg). An oriented mixed link Ig

⋃
L in

Hg may be braided to a geometric mixed braid, the closure of which is isotopic
to Ig

⋃
L.
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Figure 5: Closure of a geometric mixed braid
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Figure 6: Different labels yield non–isotopic links
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Figure 7: The ‘under – over’ interchange
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or or free opposite arcs

Figure 8:

Proof. We apply the braiding algorithm of [9] on a diagram Ig

⋃
L̃ of the PL

mixed link Ig

⋃
L. By general position Ig

⋃
L̃ contains no horizontal arcs with

respect to the height function. The idea of the braiding is on the one hand to
keep the arcs of the diagram that are oriented downwards with respect to the
height function, and on the other hand to eliminate the ones that go upwards
and produce instead braid strands. We call these arcs opposite arcs. Now,
the point is that the subbraid Ig will not be touched by the algorithm, so the
opposite arcs will be arcs of the link L. The elimination of the opposite arcs is
based on the following: If we run along an opposite arc we are likely to meet
a succession of overcrossings and undercrossings. We subdivide (marking with
points) every opposite arc into smaller – if necessary – pieces, each containing
crossings of only one type; i.e. we may have:
We call the resulting pieces up-arcs, and we label every up-arc with an ‘o’ resp.
‘u’ according as it is the over resp. under arc of a crossing (or some crossings). If
it is a free up-arc (one that contains no crossings), then we have a choice whether
to label it ‘o’ or ‘u’. The idea is to eliminate the opposite arc by eliminating its
up-arcs one by one and create instead a pair of braid strands for each up-arc.

Let now P be the top vertex of the up-arc QP (see Fig. 9). Associated to
QP is the sliding triangle T (P ), which is a special case of a triangle needed for
a ∆–move; it is right-angled with hypotenuse QP and with the right angle lying
below the up-arc. Note that, if QP is itself vertical, then T (P ) degenerates into
the arc QP . We say that a sliding triangle is of type over or under according
to the label of the up-arc it is associated with. (This implies that there may be
triangles of the same type lying one on top of the other.)

The germ of our braiding process is this. Suppose for definiteness that QP is
of type over. Then we cut QP at P and we pull the two ends, the top upwards
and the lower downwards, and both over the rest of the diagram, so as to create
a pair of corresponding strands of the anticipated braid (see Fig. 9). Finally,
we perform a ∆-move across the sliding triangle T (P ). By general position the
resulting diagram will be regular and QQ′ may be assumed to slope slightly
downwards. If QP were under then the pulling of the two ends would be under
the rest of the diagram. Note that the effect of these two operations has been to
replace the up-arc QP by three arcs none of which is an up-arc, and the two of
them being corresponding braid strands. Therefore we now have fewer up-arcs.

For each up-arc that we eliminate, we label the corresponding end strands
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Figure 9: The germ of the braiding

‘o’ or ‘u’ according to the label of their up-arc. (As already noted, in [9] this
labelling was not needed.) After eliminating all up-arcs we obtain a geometric
mixed braid, denoted B(Ig

⋃
L), the closure of which is obviously isotopic to

Ig

⋃
L. Indeed, from Definition 5, the closing arc of two corresponding endpoints

of the braid is precisely a stretched version of the initial up-arc, since it bears
the same label.

The proof of Theorem 2 is analogous to the one in Section 3 of [9]. We have
repeated it here for the sake of completion.

3 Geometric Markov theorem for Hg

As in classical knot theory, the next consideration is how to characterize geomet-
ric mixed braids that induce via closure isotopic links in Hg. For this purpose
we need to recall the L-moves between braids. These were introduced in [9],
and they generalize geometrically the Markov moves in the following sense. An
Lo-move resp. Lu-move on a braid consists of cutting an arc open and splic-
ing into the broken strand new arcs to the top and bottom, both over resp.
under the rest of the braid (see Fig. 10 for the case of Hg). As remarked in
[9], using a small braid isotopy, a braid L-move can be equivalently seen with
a crossing (positive or negative) formed (see Fig. 11 for Hg). Therefore, a
geometric Markov move in a braid, that introduces a crossing in the bottom
right position, is a special case of an L-move. L-moves and braid isotopy gener-
ate an equivalence relation on braids called L-equivalence. It was shown in [9]
that L-equivalent classes of braids are in bijective correspondence with isotopy
classes of oriented links in S3, the bijection being induced by ‘closing’ the braid.
Modified slightly, L-moves in a handlebody are defined as follows.

Definition 6 (Geometric L-moves in Hg ). Let Ig

⋃
B be a braid in Hg and

P a point of an arc of the subbraid B, such that P is not vertically aligned with
any crossing. Doing a geometric L-move at P means to perform the following
operation: cut the arc at P , bend the two resulting smaller arcs slightly apart
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Figure 11: An L–move introduces a crossing

by a small isotopy and stretch them vertically, the upper downwards and the
lower upwards, and both over or under all other arcs of the diagram, so as to
introduce two new corresponding strands with endpoints on the vertical line of
P , labelled ‘o’ or ‘u’ according to the stretching. Stretching the new strands
over will give rise to a geometric Lo-move and under to an geometric Lu-move.
Undoing an L-move is defined to be the reverse operation. Also in this set-
up, two geometric mixed braids in Hg that differ by an L-move shall be called
L-equivalent.

Fig. 10 illustrates an example of a geometric Lo-move and a geometric Lu-move
at the same point of a geometric mixed braid, whilst Fig. 11 illustrates an
abstract geometric Lo-move and the crossing it introduces in the braid box.

Remark 2. L-equivalent geometric mixed braids have isotopic closures, since
the labels we give to the new endpoints after performing an L-move on a mixed
braid agree with the type of the L-move. So closure is compatible with the
L-move, and it corresponds to introducing a twist in the mixed link.



Knot theory in handlebodies 10

We are now in a position to state the following.

Theorem 3 (Geometric version of Markov theorem for Hg). Two ori-
ented links in Hg are isotopic iff any two corresponding geometric mixed braids
differ by a finite sequence of L-moves and isotopies of geometric mixed braids.

Proof. Let B denote the braiding map of Theorem 2, let Ig

⋃
L̃ be a mixed link

diagram in Hg, and let Ig

⋃
B = B(Ig

⋃
L̃). By Theorem 2, C ◦ B(Ig

⋃
L̃) is

isotopic to Ig

⋃
L̃. Further, B◦C(Ig

⋃
B) = Ig

⋃
B. This follows from Definition

5 and from the fact that if we braid the closing arcs of a mixed braid, Ig

⋃
B

say, each closing arc will give rise to one pair of corresponding strands, so we
obtain again the braid Ig

⋃
B.

We now consider the liftings B̃ and C̃ of the maps B and C on isotopy classes of
link diagrams and on L-equivalent classes of geometric mixed braids respectively.
We will show that C̃ is a bijection with inverse B̃. It follows from Remark 2
that C̃ is well-defined. Thus, from the observations above, it only remains to
show that B̃ is also well-defined, that is to show that geometric mixed braids
corresponding to isotopic mixed links are L-equivalent. For this we apply the:

Relative Version of Markov theorem (Theorem 4.7 of [9]) Let L1, L2

be oriented link diagrams in S3, both containing a common braided portion B.
Suppose that there is an isotopy of L1 to L2 which finishes with a homeomor-
phism fixed on B. Suppose further that B1 and B2 are braids obtained from our
braiding process applied to L1 and L2 respectively, both containing the common
braided portion B. Then B1 and B2 are L–equivalent by moves that do not
affect the braid B.

Here Ig plays the role of the the common subbraid B, which, by Definition 3 and
by Theorem 1, remains fixed throughout an isotopy of two mixed link diagrams
Ig

⋃
L̃1 and Ig

⋃
L̃2. Further, the braiding B keeps Ig fixed in the corresponding

geometric mixed braids, Ig

⋃
B1 and Ig

⋃
B2, say. Thus, the relative version

of Markov theorem guarantees that Ig

⋃
B1 and Ig

⋃
B2 are L-equivalent by

L-moves that do not affect Ig. But this is precisely the definition of L-moves
in Hg (recall Definition 6). The only difference from S3 is that here we attach
labels to the corresponding strands of each L-move according to its type. In S3

this was not needed.

4 Algebraic versions of Markov theorem

In order to construct invariants of knots in the handlebody using the braid
approach we must translate Theorem 3 into algebra (see for example [7] for S3

and [11] for the solid torus). For this we need first to introduce the braid groups
Bg,n.
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Figure 12: Algebraic mixed braids

Definition 7. An algebraic mixed braid on n strands is an element of the braid
group Bg+n consisting of two disjoint sets of strands, such that the first g strands
constitute the identity braid Ig. We denote algebraic mixed braids in the same
way as the geometric mixed braids.

Fig. 12 suggests two ways for depicting abstractly algebraic mixed braids, and
it gives a concrete example of an algebraic mixed braid on three strands.
We shall see that an algebraic mixed braid is a special case of a geometric mixed
braid. Clearly, it is a special case of an unlabelled geometric mixed braid. We
say that an algebraic mixed braid is made geometric if we attach arbitrary labels
‘u’ or ‘o’ at its corresponding endpoints. Note that this is an ambiguous process.

Definition 8. The closure of an algebraic mixed braid Ig

⋃
B, denoted Ig

⋃
B̂,

is defined by joining each pair of the (slightly bent) corresponding endpoints of
the Bn-part by a vertical segment (see left illustration of Fig. 13).

Remark 3. If we consider an algebraic mixed braid Ig

⋃
B made geometric,

its closure C(Ig

⋃
B) is isotopic to Ig

⋃
B̂, no matter what labels we used for

the Bn-part, since the closing arcs can be stretched and can slide freely over to
the right-hand side of the braid (see Fig. 13). This shows that algebraic mixed
braids are indeed special cases of geometric mixed braids, for which labels are
superfluous.

Conversely, geometric mixed braids can be made algebraic. Indeed, the oper-
ation ‘closure’ is an equivalence relation in the set of geometric mixed braids,
and we have:

Lemma 1. Every geometric mixed braid may be represented by an algebraic
mixed braid with isotopic closure.

Proof. Pull each pair of corresponding endpoints of the geometric mixed braid
Ig

⋃
B to the right side of Ig over or under the strands of Ig according to
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Figure 13: Closure of an algebraic mixed braid

its label, starting from the rightmost pair, and respecting the position of the
endpoints. Schematically:
We thus obtain unambiguously an algebraic mixed braid. We denote this last
step of the braiding algorithm by A, and we say that through A a geometric
mixed braid is made algebraic. Now, C(Ig

⋃
B) is isotopic to the closure of

the algebraic mixed braid A(Ig

⋃
B). To see this we choose as labels of the

algebraic mixed braid A(Ig

⋃
B) the initial labels of the geometric mixed braid

Ig

⋃
B. Then the closures of the two geometric mixed braids are isotopic, and,

by Remark 3 above, the assertion is proved.

As an example, the algebraization of the two geometric braids of Fig. 6 are
illustrated in Fig. 21.

The sets of algebraic mixed braids on n strands, denoted Bg,n, have been
treated in [12]. It is shown there that these are the underlying braid structures
for studying knots in a handlebody, in knot complements and in closed, con-
nected, orientable 3-manifolds. Moreover, they form subgroups of the groups
Bg+n with operation the usual concatenation, and with presentation:

Bg,n =

〈
a1, . . . , ag,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 ≤ k ≤ n− 1
aiσk = σkai, k ≥ 2, 1 ≤ i ≤ g,
aiσ1aiσ1 = σ1aiσ1ai, 1 ≤ i ≤ g
ai(σ1arσ1

−1) = (σ1arσ1
−1)ai, r < i.

〉
,

where the generators of Bg,n may be represented geometrically by:
Let Bg,∞ :=

⋃∞
n=1 Bg,n denote the disjoint union of all braid groups Bg,n (not

the inductive limit). Proceeding towards the algebraization of Theorem 3 we
define:
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Figure 16: Algebraic expression of an algebraic Lo-move

Definition 9. An algebraic L-move is a geometric L-move between elements of⋃∞
n=1 Bg,n, i.e. an L-move that preserves the group structure of the algebraic

mixed braids.

It follows from Remark 3 that algebraic L-moves do not need the labels ‘o’
and ‘u’. In some illustrations we keep the labels for the sake of clarity. An
algebraic L-move in a braid α ∈ Bg,n has the following algebraic expressions,
depending on its type. These are easily derived, as Fig. 16 shows.

Lo-type: α = α1α2 ∼ σ−1
i . . . σ−1

n α1σ
−1
i−1 . . . σ−1

n−1σ
±1
n σn−1 . . . σiα2σn . . . σi,

Lu-type: α = α1α2 ∼ σi . . . σnα1σi−1 . . . σn−1σ
±1
n σ−1

n−1 . . . σ−1
i α2σ

−1
n . . . σ−1

i .

Lemma 2. Consider a geometric mixed braid containing a geometric L-move,
which is made algebraic. Then the L-move is turned into an algebraic L-move.

Proof. Since the type of a geometric L-move agrees with the label of its end-
points, by pulling the endpoints to the right the crossing of the L-move slides
over by a braid isotopy. Schematically:
The case of a geometric Lu-move is completely analogous. Here the pulling
takes place under the braid, so the crossing of the geometric Lu-move slides
along to the right to form an algebraic Lu-move.

Now we can state the following:

Theorem 4 (First algebraic version of Markov theorem for Hg). Two
oriented links in Hg are isotopic iff any two corresponding algebraic mixed
braids differ by a finite sequence of algebraic L-moves and the braid relations in⋃∞

n=1 Bg,n.

Proof. It follows from Theorem 3 and Lemma 2.

Remark 4. Theorem 4 is a rephrasing of Theorem 3 in an algebraic set-up.
One could omit Theorem 3 and prove Theorem 4 directly using the Relative
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Figure 17: Sliding a geometric Lo-move to the right

Version of Markov theorem, after incorporating in the braiding algorithm B the
last algebraization step A. We decided to separate the two results, so as to
stress the passage from the geometric to the algebraic set-up and the results
that are valid in each one.

In order to look for Markov functionals on Bg,∞, so as to construct link invari-
ants in Hg, we further prove:

Theorem 5 (Second algebraic version of Markov theorem for Hg). Two
oriented links in Hg are isotopic iff any two corresponding algebraic mixed braids
differ by a finite sequence of the following moves:

1. Markov move: β1β2 ∼ β1σ
±1
n β2, β1, β2 ∈ Bg,n

2. Markov conjugation: σi
−1βσi ∼ β, β, σi ∈ Bg,n

Proof. The two types of moves are illustrated in Figs. 18a and 18b. It is easy
to see that both do not leave the isotopy class of the link. In fact, the first one
is simply a special case of an algebraic L-move that takes place at the rightmost
part of the algebraic mixed braid, whilst the second one clearly induces isotopy
via closure, as defined in Definition 8. The other direction is shown by reducing
to Theorem 4. Indeed, an algebraic L-move can be realized by a finite sequence
of the above moves, as it follows clearly from the algebraic expressions of the
two types of algebraic L-moves (recall Fig. 16).

Algebraic mixed braids that are equivalent in the context of Theorem 4 or
Theorem 5 shall be called Markov equivalent. A remark is now in order.

Remark 5. In the classical case in S3 the braid move α1σ
±1
n α2 ∼ α1α2 is

equivalent to the move
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Markov

Figure 18: The Markov move in Hg and Markov conjugation in Hg

ασ±1
n ∼ α,

where α = α1α2 ∈ Bn. This is still true in the case of a solid torus (see [10],
[4]). To see this think that the infinite strand of a solid torus may be closed
at the point at infinity, so any loop can conjugate with no obstruction. In [4],
Lemma 39, it is shown how to commute a loop from the bottom to the top of the
braid without closing the infinite strand. But in a handlebody of genus greater
than one this is not the case any more. Here the braid word α2 may contain
more than one of the g generators ai of the braid group (recall Fig. 15). This
is discussed in detail in the next section.

5 On hidden conjugations

There are two natural questions arising now:

(1) are there any ‘hidden’ conjugations involving the generators ai, which
preserve the isotopy class of the closure of a mixed braid (even though the
strands of Ig do not participate in the closure)?

(2) if yes, are all conjugations ‘allowed’?

Before answering we need to introduce another notion.

Definition 10. A loop in Bg,n is a word of the form bi := aiai+1 · · · ag or its
inverse, for i < g, and a maximal loop the word b1 := a1a2 · · · ag or its inverse
(see Fig. 19 for illustrations). A maximal loop shall be denoted by ω.
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Figure 20: The proof of Lemma 3

The answer to the first question is positive. Indeed, we have:

Lemma 3. Let α ∈ Bg,n be arbitrary and let ω be a maximal loop. Then the
braids α ω and ω α are Markov equivalent.

Proof. Fig. 20 demonstrates that, using algebraic L-moves and conjugation by
a σ1, the given algebraic mixed braids are Markov equivalent by Theorem 5.
Thus their closures are isotopic.

Remark 6. An alternative proof of Lemma 3 would be to take the closures
of ω−1 α ω and α and to observe that a closing arc of ω−1 α ω can be dragged
around to the left and all the way round to the position α.

The answer to the second question is negative, as the example below shows: The
two algebraic mixed braids of Fig. 21 are the algebraizations of the geometric
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......
......

......
......

conjugation

by 2a

Figure 21: Two non–isotopic conjugate algebraic mixed braids

mixed braids of Fig. 6, thus their closures are the two non-isotopic mixed links
of Fig. 6.
Now a third question arises:

(3) Can we list all the conjugations that are allowed with respect to isotopy?

In order to answer this question we give first another presentation of the braid
group Bg,n with the bi’s as generators. This presentation is easily derived from
the one with the generators ai given in the previous section using that ai =
bibi+1

−1.

Bg,n =

〈
b1, . . . , bg,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 ≤ k ≤ n− 1
biσk = σkbi, k ≥ 2, 1 ≤ i ≤ g
biσ1brσ1 = σ1brσ1bi, r ≤ i

〉
.

It is important to understand that conjugation by some bi of an algebraic mixed
braid is equivalent to changing the labels of some pair of corresponding endpoints
in a related geometric mixed braid. If, for example, the two corresponding
endpoints of the geometric mixed braid lie to the left of all strands of Ig, then
by a braid isotopy part of which is absorbed inside the braid box, the geometric
mixed braid can look like one of the middle pictures of Fig. 22. Thus, change of
labels corresponds to conjugating the algebraization of the ‘o’ braid (resp. the
‘u’ braid) by the loop b1 (resp. b1

−1), as Fig. 22 demonstrates.
But these conjugations are allowed as we proved in Lemma 3. (To see the
isotopy on the level of the geometric mixed braids look at the closing arc of
the left middle braid of Fig. 22. This can pass from the ‘u’ position to the ‘o’
position without any obstruction from the braid.) Thus, change of labels in this
case reflects isotopy between the closures of the two geometric mixed braids.

Let, now, the two corresponding endpoints of a geometric mixed braid lie
between the ith and (i+1)st strand of Ig, for i 6= 1. Then, with similar reasoning
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Figure 22: Conjugation by b1 corresponds to allowed change of labels
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Figure 23: Conjugation by b2 corresponds to non–allowed change of labels

as above, change of labels corresponds to conjugating the ‘o’ braid (resp. the
‘u’ braid) by the loop bi+1 (resp. bi+1

−1), see Fig. 23. And conversely, two
algebraic mixed braids that are conjugate by a bi, with i 6= 1, can be seen
as the algebraizations of two geometric mixed braids which differ only by the
labels of one pair of corresponding endpoints. But such a change of labels does
not reflect isotopy. To see this, think of the infinitely extended strands of Ig

joining at the point at infinity. Then, the closing arc of the geometric ‘u’ braid
would have to cross the point at infinity in order to come to the ‘o’ position.
Consequently conjugations by the bi’s for i 6= 1 are not allowed, except for some
obvious special cases of disconnected diagrams, which would then imply that
the knot can also live in a handlebody of smaller genus.

Finally, the answer to the third question lies in the following result.

Theorem 6. Conjugation by a maximal loop ω is the only conjugation by words
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in the bi’s, which preserves the isotopy class in Hg of the closure of any braid in
Bg,n. That is, for any word β ∈ Bg,n in the bi’s, different from b1

n, for n ∈ Z,
there is an α ∈ Bg,n, such that α β and β α have non-isotopic closures.

Proof. Counter-examples of the required kind exist in the one-strand braid
group Bg,1. Indeed, assume the theorem were false, i.e. the closures of β α β−1 ∈
Bg,1 and α ∈ Bg,1 are isotopic, for all α, β ∈ Bg,1 with α a word in the bi’s
and β some br. From Theorem 4 we know that these two braids are related by
braid isotopies and algebraic L-moves. Since Bg,1 is the group generated by the
bi’s, and this is a free group, β cannot be commuted through α. Hence we have
to invoke the L-moves. These introduce some σi’s but they do not change the
order of the bi’s. According to the relations in the braid group, this can only
be done if the condition r ≤ i is satisfied. But this is true always, only if r = 1.
Therefore, β has to be b1 or its inverse. Thus, conjugation by br for r ≥ 2
cannot be realized in the generic case. Topologically, this corresponds precisely
to crossing the point at infinity discussed above.

It is crucial for the whole study of braids in a handlebody to note that not all
conjugations in the groups Bg,n preserve the isotopy class of the closure of an
algebraic mixed braid.

Corollary 1. Theorem 6 disproves Conjecture 4.4 in [18].

6 Markov functionals

Theorem 5 opens up the possibility to define invariants of links in the handle-
body by algebraic considerations. This runs largely in parallel with the deriva-
tion of link invariants in S3 from Markov traces, see for example [7]. In the
handlebody case, however, trace functionals are not appropriate because not
all conjugations are allowed, see Theorem 6. Hence, we have to modify the
definitions, so as to take this into account.

For an integral domain R let RBg,n denote the group ring of the handlebody
braid group. A Markov functional is an R-linear map

µ : RBg,n −→ R,

for which units x, λ ∈ R∗ exist such that:

µ(1) = 1 (1)
xµ(β) = µ(ι(β)) (2)

µ(βσ±1
i ) = µ(σ±1

i β), βσi ∈ Bg,n (3)
µ(β1σ

±1
n β2) = λ±1µ(β1β2) β1, β2 ∈ Bg,n (4)

Here ι stands for the morphism that embeds Bg,n into Bg,n+1 by adding an
unlinked strand on the right. Moreover, we need the exponent sum of ordinary
crossings
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e : Bg,n −→ Z, σi 7→ 1, ar 7→ 0, e(β1β2) = e(β1) + e(β2).

Theorem 5 now implies the following:

Definition 11. The expression defined by

L(L) := xn−1λ−e(B(L))µ(B(L)),

where B(L) ∈ Bg,n is an invariant of oriented links in the handlebody.

Remark 7. Nice quotients of the group algebra of Bg,n that support Markov
functionals are to be studied in further work.
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